RESEARCH PAPER
Influence of soil physical properties on electrical parameters of Elec-trodes|SoilSsystem in aspect of the determination of soil moisture and salinity
 
More details
Hide details
1
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
 
 
Publication date: 1993-05-06
 
 
Acta Agroph. 1993, (0), 5-107
 
KEYWORDS
ABSTRACT
The possibility to monitor soil water status is an indispensable condition to control as well as to model processes occuring in the soil-plant-atmosphere continuum. Taking into consideration that only these sensors can be integrated in modern data acquisition systems that are read electrically, it becomes clear that the sensors for soil moisture and salinity must be electrical. Continuously undertaken since the end of the previous century attempts to evaluate soil moisture from soil electrical conductivity or electrical permittivity as derived from the measurements of an ElectrodeslSoil System (ESS ) impedace has not brought electrical methods sufficiently reliable to be widely applied. Calibration curves, i.e. the soil moisture-electrical resistance or moisture-electrical capacitance rela-tionships have proved to be strongly affected by frequency of the applied electrical field as well as by the soil temperature, salinity, texture and bulk density. The theory of dielectrics when applied lo soil cannot explain such phenomena as: enormous rise of electrical resistance and capacitance of the ESS with the frequency decrease, excessive influence of temperature and salinity on electrical capacitance of the ESS, and also a particularly strange phenomenon that: at the same geometry of the system and the same frequency of the applied electrical field, ESS with pure solution can reveal smaller electrical capacitance than that with saturated soil. Because of increasing interest in utilization of electrical properties of soil in order to gain information on the soil moisture and salinity, a search for a model explaining behavior of the HSS, when applied as a sensor for soil moisture and/or salinity, was undertaken. Part 2 of the presented dissertation describes an attempt to find a qualitative model of such a sensor, i.e. a model of the ESS (Electrodes|Soil System). The HSS under consideration is a system consisting of two bare electrodes and soil within their electrical field. The proposed model follows equivalent electrical circuits of impedance of the electrodelsolution interface like that applied in electrochemistry for considering kinetics of electrode processes. The model is based on clectrical polarization phenomena, including the interfacial one. It was shown that the ESS should be considered as an electrolytic cell where the soil pore water is the electrolyte. Its electrical impcdance is the resultant of several component subimpedances arising from a diversity of phenomena causing the sensor electrical polarization. It was shown that within the range of commonly applied frequencies below 108 Hz, readings of electrical capacitance, C, of the sensor (i.e. the ESS) were totally masked by interfacial pseudocapacitance while readings of the sensor electrical resistance, R, were affected by interfacial phenomena unless a special impedance bridge was applied which compensates for capacitive component of the sensor impedance. Numerical solution of the model was verified by comparison of its computer generated impedance-frequency characteristics with experimental data. The data concerned measurements of the C and R in-parallel equivalents of the ESS impedance, read within the frequency band ranged from 5*10-1-105 Hz. Then the numerical model was solved for a wide band of frequencies 10-8-1014 Hz. The solution brought to the conclusion that for the electrocapacitive measurements of the soil moisture the ap-plied frequency should fall within the range of 108—1010 Hz, whereas for the electroresistive measurements of the soil moisture and/or salinity the frequency should fall within the range of 103-107 Hz, Recent advances in generation of fast rising pulses has resulted in the application of Time Domain Reflectometry (TDR) for measurements of soil electrical permittivity (thus also moisture) and electrical conductivity (thus also salinity). Ihis technology is particularly suitable for the deter-mination of electrical permittivity of conducting media, like the soil, because it operates with a pulse having its leading edge composed of frequencies from the range 108-1010 Hz, recommended for readings of electrical permittivity of the soil. The technology of TDR is continuously developed in The Institute of Agrophysics, Polish Academy of Sciences and brought to a TDR apparatus for simultaneous measurements of the soil electrical permittivity, conductivity and temperature, from which the soil moisture and salinity can be determined, as discussed below in part 3 and 4. Part 3 of the dissertation concerns reduction of influence of soil matrix on dielectric readings of the soil moisture. Samples of soils, soil-like, and also other capillary-porous materials were analysed using TDR with the aim of determining the contribution of material bulk density, thus also porosity, to the electrical permittivity-water content conversion function. The study showed that bulk density, thus also porosity, substantially affects the permittivity-moisture relationship. Two equivalent, empirical, normalized conversion functions were found - one accounting for bulk density and the other for porosity effect. Each of them, when applied to the dielectric TDR determinations of moisture, doubled precision of the determinations, independent of the material bulk density, thus also porosity. Part 4 of the dissertation concerns the possibility of interpretation of simultaneous readings of soil electrical permittivity and conductivity in terms of the soil salinity. When analyzing relationships between soil bulk clectrical conductivity, ecG, and its bulk relative electrical permittivity, e, it was found (for the investigated mineral soils) that within the range of volume water content, θ, from about 0.2 up to saturation the derivative δecG/δε is moisture independent and is directly proportional to the soil salinity. It was found that the variable SX=3ecG/δε, determined from in situ measurements of ecG(θ>0.2) and ε(θ>0.2), can be considered as an index of relative salinity of the soil. It was shown that knowing the salinity index, SX, and also sand content, it was possible to calculate electrical conductivity of soil pore water which is a widely accepted measure of the soil salinity. This way the possibility for nondestructive monitoring of salt migration in the soil became realistic. This possibility was experimentally verified in a column experiment by recording time and spatial variability of non-steady salt flow parameters (break-through curves). Original methodical solutions of the measurements and their experimental embodiments are described in part 5 of the dissertation. It contains detailed description of: a variable ratio arm impedance bridge for the determination of the capacitive-resistive impedance of the ESS, a programme for numerical solution of the frequency dispersion of the ESS impedance, TDR in application for the determination of electrical permittivity and conductivity of soil.
METADATA IN OTHER LANGUAGES:
Polish
Wpływ fizycznych właściwości gleby na elektryczne parametry układu elektrody-gleba w aspekcie pomiaru jej wilgotności i zasolenia
agrofizyka, gleby, wilgotność, zasolenie, badania gleboznawcze, pomiary elektryczne, właściwości fizyczne, elektrody
Możliwość monitoringu parametrów wody glebowej jest warunkiem koniecznym kontrolowania oraz matematycznego modelowania procesów zachodzących w kontinuum gleba-roślina-atmosfera, a więc i prognozowania ich następstw. Biorąc pod uwagę, że integrowalne we współczesnych cy-frowych systemach akwizycji danych są wyłącznie czujniki "czytane" elektrycznie, należy dysponować elektrycznymi czujnikami agrofizycznych parametrów wody (patrz część l). Istotne spośród tych parametrów -wilgotność gleby oraz jej zasolenie, łatwe do bezpośredniego zmierzenia w laboratorium, są zarazem najtrudniejsze do odczytu elektrycznego. Niniejsza rozprawa dotyczy poszukiwań metody pomiaru elektrycznych parametrów gleby oraz sposobu ich interpretacji w kategoriach wilgotności i zasolenia. Dla ułatwienia identyfikacji dyskutowanych zmiennych ich symbole, oddzielone przecinkami, są wtrącane w tekst. Np.: "względna elektryczna przenikalność gleby, ε, decydująca o elektrycznej pojemności układu elektrody|gleba..,", "elektryczna konduktywność gleby, ekG, zależna od wilgotności gleby, θ, oraz od elektrycznej konduktywności elektrolitu (wody glebowej), ekE,..." itp. Dla zaznaczenia granic faz występujących w szeregu elektrochemicznym tworzonym przez układ dwu elektrod w glebie, przyjęto stosowany w elektrochemii sposób dzielenia nazw tych faz pionową kreską. Np.: "układ elektrody|gleba...", "granica elektrod|roztwór..." itp. Ten sposób podkreśla występowanie bezpośredniego kontaktu elektrycznego pomiędzy dyskutowanymi fazami.Trzon rozprawy tworzą cztery zasadnicze części: 2,3,4, i 5 w skrócie omówione niżej.
REFERENCES (113)
1.
Ansoult M., De Backer L.W., Declercq M.: Statistical relationship between apparent dielectic constant and water content in porous media Soil Science Soc. Am. J. 49, 47-50, 1985.
 
2.
Arble W.C, Shaw M.D.: Bibliography on the. methods for determining soil moisture. Eng. Res. Bull. B-78, Coll, of Eng. End. Arch., Univ. Park, Perm., 1959.
 
3.
Arulanandan K., Mitchell J.K.: Low frequency dielectric dispersion of day-water electrolyte systems Clays and Clay Minerals, Vol. 16,337-351, 1968.
 
4.
Bard A.J.: Encyclopedia of electrochemistry of the elements, Vol. II. Marceli Dekker. inc., 1974.
 
5.
Campbell G.S., Gee G.W. Water potential miscellaneous methods. Agronomy 9. Fart I, 2-nd Ed, 619-6,13, 1986.
 
6.
Chelkowski A.: Fizyka dielektryków. PIW, Warszawa, 1972.
 
7.
Chernyak G.Ya.: Dielectric methods for investing moist soils. Israel Program for Scientific Translations Ltd. 1PST Cat. No. 1831. Jerusalem, Available from the U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springf ield, Va. 22151, 1967.
 
8.
Cole K.S., Curtis J.: Wheatstone bridge and electrolytic resistor for impedance measurements over wide frequency range. Review of Scientific Instrumentation, 8, 333, 1937.
 
9.
Conway R.R.: Theory and principles of electrode processes. The Ronald Press Comp., New York, 1965.
 
10.
Dalton P.N., Helkerath W.N., Rawlins D.S., Rhoades J.D.: Time-domain reflectometry: simultaneous measurement of soil water content and electrical conductivity with a single probe. Science, 224, 989-990, 1984.
 
11.
Dalton F.N., Van Genuchten M.Th.: The Time-Domain Reflectometry method for measuring soil water content and salinity. Geoderma, 38, 237-250, 1986.
 
12.
Dasberg S., Dalton F.N.: Time Domain Reflectometry field measurements of soil water content and electrical conductivity. Soil Sci. Soc. Am. J., Vol. 49, 293-297. 1985.
 
13.
Dasberg S., Nadler A.: Soil salinity measurements. Soil Use and Management, Vol 4, Nr 4:127-133, 1988.
 
14.
Davis J.L., Chudobiak W.J.: In situ meter for measuring relative permittivity of soils. Geological Survey of Canada Knergy, Mines and Resources of Canada, Ottawa, Paper 75-1A, 75-79, 1975.
 
15.
Dean T.J., Bell J.P., Baty A.J.B.: Soil moisture measurement by an improved capacitance technique: I. Sensor design and perfoemance. journal of Hydrology, 93, 67-78, 1987.
 
16.
Deighton T.: The effect of the movement of soil salts on standarization values of electrodes used in moisture determinations. J. Agric. Sci., 13, 1923.
 
17.
Dobrzański B,. Malicki M.: A conductometric method for the control of the moisture dynamics of mineral soils. Polish Journal of Soil Science, 12 (2), 1979.
 
18.
Dobrzański B., Domżał H. Malicki M.: Badania przydatności metody elektrometrycznej do pomiaru dynamiki wilgotności gleb wytworzonych z piasku w warunkach doświadczeń uprawowo-nawozowych. Zeszyty Problemowe Postępów Nauk Rolniczych, 77b, 225-241, 1968.
 
19.
Dobrzański B., Gliński J., Malicki M.: Electrical resistance method for measuring moisture dynamics in sandy soils. Roczniki Gleboznawcze, dodatek do t XIV: 15-21, 1964.
 
20.
Dobrzański B., Gliński J., Malicki M., Domżał H.: New electrical resistance method for continuous measurements of soil moisture content under field conditions. International Soil Water Symposium, 177-187, Praha, 1967.
 
21.
Domżał H., Malicki M.: Stacjonarna elektroda-sonda do pomiarów wilgotności gleb wytworzonych z piasku. Roczniki Gleboznawcze, dodatek do t. 15, 193-197, 1965.
 
22.
Doluchanow M.P.: Propagacja fid radiowych. Wydawnictwo Komunikacji i Łączności, Warszawa, 22-23. 1975.
 
23.
Feates F.S., Ives D.J.G., Pryor J.H.: Alternating current bridge for measurements of electrolytic conductance. Journal of Electrochem. Soc., 103, 580, 1956.
 
24.
Galus Z.: Elektroanalityczne metody wyznaczania stałych fizykochemicznych (praca zbiorowa. PWN, Warszawa, 1979.
 
25.
Gardner C.M.K., Bell J.P., Cooper J.D., Dean TJ., Hodnett M.G.: Soil water content. In: Soil Analysis: Physical Methods (eds C.E. Mullins & K.A. Smith), 1-73. Marcel Dekker, New York, 1991.
 
26.
Gawlik J., Malicki M., Stępniewski W.: The problem of effective voltage control in measurement of ODR in soil. Polish Journal of Soil Sci., 10(1), 9-14, 1977.
 
27.
Gileadi E., Kirova-Eisner E., Penciner J.: Interfacial electrochemistry, an experimental approach. Addison-Wesley Publ. Comp. Inc., 1975.
 
28.
Gillham R.W., Klute A., Hermann D.F.: Hydraulic properties of a porous medium: measurement and empirical presentation. Soil Science of America Journal, 40, 203-207, 1976.
 
29.
Gliński J., Stępniewski W.: Soil aeration and its role for plants. CRC Press. Inc., 1985.
 
30.
Gliński J., Stępniewska Z., Stępniewski W., Ostrowski J.: Znaczenie warunków tlenowych gleb w programach melioracyjnych. Problemy Agrofizyki 67, 65-84, Polska Akademia Nauk, Zakład Agrofizyki, Ossolineum, 1992.
 
31.
Gupta S.C., Hanks R J.: Influence of water content in electrical conductivity of the soils. Soil Science Society of America Proceedings 36, 855-857, 1972.
 
32.
Halbertsma J., Przybyła Cz.: Application and accuracy of a dielectric soil water content meter. International Conference on Measurement of Soil and Plant Water Status. Logan, Utah, USA. Vol. 1, 11-15, July 6-10, 1987.
 
33.
Hanks RJ.: Model for predicting plant yield as influenced by water use. Agronomy Journal, 66, 660-665,1974.
 
34.
Hanks R.J., Ashcroft O.L., Rasmussen V.P., Wilson G.D.: Corn production as influenced by irrigation and salinity - Utah studies. Irrigation Science, 1, 47-59, 1978.
 
35.
Hasted J.B.: Aqueous dielectrits. Chapman and Hall, London, 1971.
 
36.
Hayhoe H.N., Bailey W.G.: Monitoring changes in total and unfrozen water content in seasonally frozen soil using Time-Domain Reflectometry and neutron moderation techniques. Water Resources Research, 21, 8, 1985.
 
37.
Hewlett Packard: TDR fundamentals for use with HP' 54120T digitizing oscilloscope and TDR. Application note, 62,1988.
 
38.
Hilhorst M.A., Grocncwold J., de Groot J.F.: Water content measurements in soil and rockwool substrates: dielectric sensors for automatic in situ measurements. Sensors in horticulture. Acta Horti. Cult., 304, 209-218, 1992.
 
39.
Hippel A.: Dielectrics and waves. J. Wiley & Sons, Inc., 1959.
 
40.
Hoekstra P., Dclaney A.: Dielectric properties of soils at UHF and microwave frequencies. Journal of Geophysical Research, 79: 1699-1708, 1974.
 
41.
James D.W., Hanks R.J., Jurinak J.J.: Modern Irrigated Soils. A Wiley-Interscience Publication, John Wiley & Sons, Inc., 140-149, 1982.
 
42.
Kirksthether E.J.: Ground dielectric constant measurement using a section of balanced two wire transmission line. Institution of Radio Engineers, Transactions on Antennas and Propagation, AP-8, 307-312, 1960.
 
43.
Kiselev N.F.: Dielectric characteristics of certain soils over the frequency range 0.1-250 MHz. Moscow University Soil Science Bulletin, 29, 1/2, 19-22, 1974.
 
44.
Kolev N.V., Penev K., Kirkova Y., Krstanov B., Malicki M.: Electrical probes of soil moisture and their applicability in irrigation control. Zeszyty Problemowe Postępów Nauk Rolniczych, 346, 49-53, 1987.
 
45.
Kortüm G.: Lehrbuch der Elektrochemie. Verlag Chemie, GMBH, 1966.
 
46.
Kuraż v., Kutilek M., Kaspar I.: Resonance-capacitance soil moisture meter. Soil Sci., 110, 278-279, 1970.
 
47.
Ledieu J., Ridder de P., Clerck de P., Dautrebande S.: A method of measuring soil moisture by Time-Domain Rejlectometry. J. of Hydrology 88, 319-328, 1986.
 
48.
Lemon E.R., Krickson A.E.: The measurement of oxygen diffusion in the soil with a platinum microelectrode. Soil Sci. Soc. Am. Proc., 16, 160-163,1952.
 
49.
Loon W.K.P. van, Perfect E., Groenevelt P.H., Kay B.D.: A new method to measure bulk electrical conductivity in soils with Time Domain Refleclomelry. Canadian Journal of Soil Science, 70, 403-410, 1990.
 
50.
Loon W.K.P. van, Perfect E., Groenevelt P.H., Kay B.D.: Application of dispersion theory to Time Domain Reflectometry in soils. Transport in Porous Media, 6, 391-406, 1991.
 
51.
Luder W.F.: The precision conductivity bridge assembly. J. Am. Chem. Soc., 62, 89, 1940.
 
52.
Lytsch A.M., Lis L.S.: Electrophysical properties of peat soils and their practical applications. Academy of Sciences of Bielorussian SSR, The Peat Institute, Nauka i Technika, 116-119, 1980.
 
53.
Malicki M.: Kontrola dynamiki wilgotności gleb w oparciu o ich właściwości elektrofizyczne. Praca doktorska. Akademia Rolnicza w Lublinie, 1978.
 
54.
Malicki M.A.: Zagadnienie oraz technika pomiaru wilgotności gleb i potencjału wody glebowej. W: Fizykochemiczne metody badań materiału glebowego, Polska Akademia Nauk, Zakład Agrofizyki w Lublinie, 37-74, 1979.
 
55.
Malicki M.A.: Przegląd metod pomiaru wilgotności gleb i ocena ich przydatności w badaniach polowych. Problemy Agrofizyki, Polska Akademia Nauk. Zakład Agrofizyki, Ossolineum, 31, 1980.
 
56.
Malicki M.: A capacity meter for the investigation of soil moisture dynamics. Zesz. Probl. Post, Nauk Roln., 220, 201-214, 1983.
 
57.
Malicki M.: A reftectomeiric (TDR) meter of moisture content in soils and other capillary-porous materials. Zesz. Probl. Post. Nauk Roln., 388, 107-114, 1990a.
 
58.
Malicki M.: Measurements of redox potential and Oxygen Diffusion Rate (ODR) in the soils. Zesz. Probl. Post. Nauk Roln., 388, 1990b.
 
59.
Malicki M.A.: Reflektometryczny miernik wilgotności. Problemy Agrofizyki, 64, 95-101, 1991.
 
60.
Malicki M., Hanks R.J.: Interfacial contribution to two-electrode soil moisture sensor readings. Irrigation Science, 10, 41-54, 1989.
 
61.
Malicki M., Skierucha W.: A manually controlled soil moisture meter operating with 300 ps rise-time needle pulse. Proceedings of the International Conference on Measurement of Soil and Plant Water Status, Logan, Utah, USA, Vol. 1, 103-109, July 6-10, 1987.
 
62.
Malicki M.A., Skierucha W.M.: A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrigation Science, 10, 153-163, 1989.
 
63.
Malicki M.A., Skierucha W.M. patent: Reflektometryczny miernik wilgotności ciał kapiiarno-porowatych - zwłaszcza gleby. Pat, Nr. 154440, UP PRL, Warszawa 1987.
 
64.
Malicki M.A., Skierucha W.M. patent: Wieloczujnikowy próbnik do reflektometrycznego pomiaru wilgotności, zwłaszcza gleby. Pat. Nr. 266616, UP PRL, Warszawa, 1987.
 
65.
Malicki M.A., Skierucha W.M. patent: Impulsnyj refleklometriczeskij izmieritiel włażnosti kapillarno-poristich tieł. Gosudarstwiennyj Rejester Izobrietienij. Nr. 1835069, 1988.
 
66.
Malicki M.A., Skierucha W.M. patent: Reflektometriseher Feuchtigkeitsmesser für kapiilar-porose Korper, insbesondere für den Boden. Pat. DD 271 380 A5, AusschIiessungspaten DDR, 1988.
 
67.
Malicki M.A., Skierucha W.M. patent: Reflectometric moisture meter for capillary-porous materials, especially for the soil. Pat. Nr. 4.918,375, USA, 1990.
 
68.
Malicki M.A., Skierucha W.M. patent: Reflektometricky meric vlhkosti pro kapilarne porezni materiały, zejmena pro zeminu Federalni Urad Pro Vynalezy, Ceska a Slovenska Federativni Republika. Pat. Nr. PV 4552-88.X, 1991.
 
69.
Malicki M.A., Skierucha W.M. patent: Reflectometric moisture meter for capillary-porous materials, especially for the soil. European Patent Officc, Pat, Nr. 88110563.9-2204 0297604, Germany. 1992,.
 
70.
Malicki M.A., Skierucha W.M. patent: Reflectometric moisture meter for capillary-porous materials, especially for the soil. Israel Patent Office. Pat. Nr. 86743, Israel, 1992.
 
71.
Malicki M., Campbell K., Hanks R.J.. Investigations on power factor of the soil electrical impedance us related to moisture, salinity and bulk density. Irrigation Science, 10, 41-62, 1989.
 
72.
Malicki M.A., Plagge R., Renger M., Walczak R.T.: Application of Time-Domain Reflectometry (TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores. Irrigation Science, 13, 65-72, 1992.
 
73.
Malicki M., Walczak R.: A gauge of the redox potential and the Oxygen Diffusion Rale in the soil with an automatic regulation of cathode potential. Zeszyty Problemowe Postępów Nauk Rolniczych, 220, 447-451,1983.
 
74.
Mclntyre D.S.: The platinum microelektrode method for soil aeration measurement. Advances in Agronomy, vol.22,1970.
 
75.
Małkowski Z., Sobieski Z., Teisseyre R., Uchman J.: Zastosowanie metody elektryczno - oporowej w badaniach geofizycznych. Państwowy Instytut Geologiczny, Biuletyn 63, Seria nr 6, Warszawa, 1951.
 
76.
Matsui S.: On the effect of soil moisture rontem on the temperature coefficient of soil electrical conductivity. Bulletin of the Faculty of Agriculture, Mie University, No. 51, 51-59, 1976.
 
77.
Matsui S., Shirai K.: Electrode interfacial impedance during the measurement of conductive and dielectric properties of soil. Bulletin of the Faculty of Agriculture, Mie University, 44, 225-240, 1972.
 
78.
Mehran M., Arulanandan K.: Low frequency conductivity dispersion in clay-water-electrolyte systems. Clays and Clay Minerals, Vol. 25, 39-48. 1977.
 
79.
Mullins C.E.: Matric Potential. In: Soil Analysis: Physical Methods (eds C.E. Mullins & K.A. Smith), Marcel Dekker, New York, 75-109, 1991.
 
80.
Nadler A., Frenkel H.: Determination of soil solution electrical conductivity from hulk soil electrical conductivity measurements by the four-electrode method. Soil Sci. Soc. Am. J., Vol. 44, 1216-1221, 1980.
 
81.
Nadler A., Dasherg S., Lapid I.: Time Domain Reflectrometry measurements of water content and electrical conductivity of layered soil columns. Soil Science Society of America Journal 55, 938-943, 1991.
 
82.
Nahman N.S.: Picosecond-domain waveform Measurements. Proceedings of the IBEE, Vol. 66, No. 4, 441-454, 1978.
 
83.
Oliver B.M., Cage J.M.: Electronic measurements and instrumentation. Inter-university Electronics Series, Vol. 12. McGraw-Hill Book Company, USA, 61-64, 1971.
 
84.
Ozimek E.: Podstawy teoretyczne analizy widmowej sygnałów. PWN, Warszawa, 1985.
 
85.
Philip J.R.: Plant water relations: some physical aspects. Annual Review of Plant Physiology 17, 245-268, 1966.
 
86.
Ponnamperuma F.N., Castro R.U.: Redox systems in submerged soils. Trans. Inter. Congr. Soil. Sci. 8th, Vol. 111. Bucharest, 1964.
 
87.
Poulovassilis A., Tzimas H.: The hysteresis in the relationship between hydraulic condudtivity and soil water content. Soil Science, 118, 327-331, 1975.
 
88.
Rhorades J.D.: Principles and methods of monitoring soil salinity. In: I. Shainberg and J. Shalhevet eds), Soil salinity and irrigation - Process and management, 5, 130-142. Springer Vcrlag, Berlin, 1984.
 
89.
Rhoades J.D.. Manteghi N.A., Shouse P.J., Alves WJ.: Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Science Society of America Journal 53, 433-439, 1989.
 
90.
Rhoades J.D., Raats P.A.C., Prather R.J.: Effects of liquid phase electrical conductivity on bulk soil electrical conductivity, water content and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J., 40, 651-655, 1976.
 
91.
Rhoades J.D., Schilfgaarde J.: An electrical conductivity probe for detrmining soil salinity. Soil Sci. Soc. Am. J., Vol. 40, 647-651, 1976.
 
92.
Robinson R.A., Stokes R.H.: Electrolyte solutions. Butlerworths. London, 1959.
 
93.
Rolh C.A., Malicki M.A, Plagge R.: Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Journal of Soil Sicnce, 43, 1-13, 1992.
 
94.
Roth K, Schulin R., Fliihler H., Attinger, W.: Calibration of Time Domain Reflecloinetry for water content measurement using a composite dielectric approach. Water Rcsourcckcsearch. Vol 26, No 10, 2267- -2273, 1990.
 
95.
Ruszkowska M., Terelak T.: Wpływ warunków powietrzno-wodnych na zachowanie się składników pokarmowych w glebie i na procesy fizjologiczne roślin. Problemy Agrofizyki, Polska Akademia Nauk, Zakład Agrofizyki, Ossolineum, 67, 53-64, 1992.
 
96.
Ryden B.E.: Agriculture and lite hydrosphere. Winter monitoring of soil moisture in cultivated clay, applying the Time Domain Reflectometry technique. The Symposium on "Agriculture Production in Relation to Water Sources", Czechoslovak Scientific and Technical Soc., Nov. 27-29, 1984.
 
97.
Ryden B.E.: Winter soil moisture regime monitored by the Time-Domain Reflectometry technique (TDR). Geograifiska Annalen, vol. 68. ser. A, 3, 1986.
 
98.
Shedlowsky T.A.: A screened bridge for measurement of electrolytic conductance. J. Am. Chem, Soc., 52, 1793,1930.
 
99.
Stewart J.I., Danielson R.E., Hanks R.J., Jackson E.B., Hagan R.M., Pruill W.O., Franklin W.T., Riley J.P.: Optimizing crop production through control of water and salinity levels in the soil. Utah Water Research Lab. PR 151-1, Logan, Utah, 1977.
 
100.
Strickland J.A.: Time-Domain Reflectometry measurements. Tektronix Inc. Beaverton, Oregon 97005, 1970.
 
101.
Thirsk A.R., Harrison J.A.: A guide to the study of electrode kinetics. Academic Press, New York. 1972.
 
102.
Thomas A.M.: In situ measurement of moisture in soil and similar substances by fringe capacitance. Journal of Scientific Instrumentation. 43: 21 -27, 1966.
 
103.
Tinga W.R., Voss W.A.G., Blossey D.F.: Generalized approach to multiphase dielectric mixture theory. Journal of Applied Physics, 44, 3897-3902, 1973.
 
104.
Topp G.C., Davis J.L.: Measurement of soil water content using Time-Domain Reflectometry (TDR): a field evaluation. Soil Sci. Soc. Am. J., vol. 4: 19-24, 1985.
 
105.
Topp G.C., Davis J.L., Annan A.P.: Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 3, 574-582, 1980.
 
106.
Topp G.C., Davis J.L., Annan A.P.: Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients. Soil Sci. Soc. Am. J., Vol, 46, No, 4.672-678,1982a.
 
107.
Topp G.C., Davis J.L., Annan A.P.: Electromagnetic determination of soil water content using TDR: II. Evaluation of installation and configuration of parallel transmission lines. Soil Sci. Soc. Am. J., Vol.46, No. 4,678-684,1982b.
 
108.
Topp G.C., Yanuka M., Zebchuk W.D., Zegelin S.: Determination of electrical conductivity using Time Domain Reflectometry: soil and water experiments in coaxial lines. Water Resources Rcscarch, 24, 945 952,1988.
 
109.
Troickij N.B.: Frequency-moisture dependence of electrical parameters of the soil. Doklady WASCHNIL. No. 3, 43-45, 1973.
 
110.
Turski R., Domzał H., Borowiec J., Flis-Bujak M., Misztal M.: Gleboznawstwo. Wydawnictwo Akademii Rolniczej, Lublin, 1980.
 
111.
Turski R., Malicki M.: A precise laboratory meter of a dielectric constant of soil of a different moisture. Polish Journal of Soil Science, vol. VII, No, 1, 1974.
 
112.
Warburg E.: Über das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselslrom. Annalen der Physic und Chemie, 3, 493-499, 1899.
 
113.
Whitney M., Gardner F., Briggs L.J.: An electrical method of determining the moisture content of arable soils. U.S. Dept. Agr., Div. Soils, Bull, 6, 1897.
 
eISSN:2300-6730
ISSN:1234-4125
Journals System - logo
Scroll to top